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A b s t r a c t  -The  i m a g e  recons t ruc t ion  o f  a t w o  
-dimensional periodic conductor by the genetic algorithm is 
investigated. A periodic conducting cylinder of unknown 
periodic length and shape scatters the incident wave in free 
space and the scattered field is recorded outside. Based on 
the boundary condition and measured scattered field, a set 
of nonlinear integral equations is derived and the imaging 
problem is reformulated into an optimization problem. The 
genetic algorithm is then employed to find out the global 
extreme solution of the cost function. As a result, the shape 
and the periodic length of the conductor can be obtained. 
Numerical results are given to demonstrate that even in the 
presence of noise, good reconstruction has been obtained. 

I. INTRODUCTION 

The development of inverse scattering techniques for 
imaging the shape of conducting objects is very important. 
Due to its noninvasive nature, inverse scattering can be 
applied to remote sensing, medical imaging and 
nondestructive testing. Two main categories of approaches 
have been developed. The first is an approximate approach, 
which makes use of the physical optics approximation [ 11- 
[2]. This method is comparatively straightforward to apply 
and usually computationally efficient. But the resulted 
resolution is rough and only partial knowledge of the 
scatterer can be retrieved. The second approach is to solve 
the exact equations rigorously by numerical methods based 
on optimization techniques [3]-[4]. 

Many papers use the gradient search methods, such as 

get trapped in a local extreme. Recently a relative new 
optimization approach, the genetic algorithm, has been 
applied to the inverse problem [5]-[6]. Compared to 
gradient search optimization techniques, the genetic 
algorithm is less prone to convergence to a local minimum. 

In this paper, the electromagnetic imaging of a periodic 
perfectly conducting cylinder is investigated. The genetic 
algorithm is used to recover the periodic length and the 
shape of a scatterer, by using the scattered field. In Section 
11, the relevant theory and formulations is presented. The 
general principle of genetic algorithms and the way we 
applied them to the imaging problem are also described. 
Numerical simulation is presented to demonstrate the 
proposed algorithms in Section 111. Finally, conclusions are 
given in Section IV. 

Newton-Kantorovitch method and the successive 
-overrelaxation method, to find the solution. However, this 
method is highly dependent on the initial guess and trends to with 
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11. THEORETICAL FORMULATION 

A periodic two-dimensional metallic cylinder is situated 
in a background medium with a permittivity e, and a 
permeability ,xo as shown in Fig. 1. The array is periodic in 
the xdirection with a periodic length d and uniform in the 
z-direction. The cross section of the metallic cylinder is 
assumed to be described in polar coordinates in xy plane by 
the equation p=F(B). A plane wave whose electric field 
vector is parallel to the z-axis (i.e., transverse magnetic, or 
TM, polarization) is incident upon the periodic cylinder. Let 
Ei denote the incident wave with incident angel cp, as 
shown in Fig. 1. The scattered field, E ,  = ~ , i  can be 

expressed by 

EyfX2Y)=j  2n Ci(x , y ,x ’ , y ’ )J (e ’ )d f3 ’  
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k 2  = d p 0 E o  

Here cif.y, v , s ’ , ~ ’ )  is the two-dimensional periodic Green’s 

function [7], and J,(@ is the induced surface current density 
which is proportional to the nonnal derivative of electric 
field on the conductor surface. The boundary condition at 
the surface of the scatterer states that the total tangential 
electric field must be zero and this yield an integral equation 
for J(0) : 

(3) 

For the direct scattering problem, the scattered field E,v is 
calculated by assuming that the shape of the object and the 
periodic length d is known. This can be achieved by first 
solving J(0) and calculating E,, in (1 ) .  For numerical 

calculation of the direct problem, the contour is first divided 
into sufficient small segments so that the induced surface 
current can be considered constant over each segment. 
Then the 
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Fig. 1. Geometry of a periodic conducting cylinder with a periodic 
spacing d along the x-direction. 

moment method is used to solve (1) with pulse basis 
function for expanding and Dirac delta function for testing. 

Let us consider the following inverse problem; given the 
scattered field E, measured outside the scatterer, determine 

the shape F(S) and the periodic length d of the object. 
Assume the approximate center of the scatterer, which in 

fact can be any point inside the scatter, is known. Then the 
shape F(B) function can be expanded as 

where B, and C,, are real coefficient to be determined, and 
N+l is the number of unknowns for shape function. In the 
inversion procedure, the genetic algorithm is used to 
minimize the following cost function: 

where M is the total number of measurement points. 
E ; ~ ~ ( F ~ ~ )  and Eylp“,)  are the measured scattered field and 
calculated scattered field respectively. Note that the 
regularization term alF’(e)IZ was added in (4). Please refer 
the references [6] for detail. 

Genetic algorithms are the global numerical optimization 
methods based on genetic recombination and evolution in 
nature [SI. They use the iterative optimization procedures 
that start with a randomly selected population of potential 
solutions, and then gradually evolve toward a better solution 
through the application of the genetic operators: 
reproduction, crossover and mutation operators. As soon as 
the cost function (CF) changes by <1% in two successive 
generations, the algorithm will be terminated and a solution 
is then obtained. 

111. NUMERICAL RESULTS 

Let us consider a perfectly conducting cylinder array with 
the periodic length d in free space and a plane wave of unit 
amplitude is incident upon the object, as shown in Fig. 1. 

The frequency of the incident wave is chosen to be 3 GHz; 
i.e., the wavelength A is 0.1 m. In the examples, the size of 
the scatterer is about one third the wavelength, so the 
frequency is in the resonance range. 

To reconstruct the shape and periodic length of the 
cylinder, the object is illuminated by two incident waves 
with incident angles@=45’ and 135O, and the measurement 

points are taken on two lines with Y = R‘ meter and Y = -R‘ 
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meters from x=-0.045 to 0.045 meters. Each line has nine 
measurement points. In our cases, R' is chosen much larger 
than 20"/1, where D' is the largest dimension of the 
scatterer. Note that for each incident angle eighteen 
measurement points at equal spacing are used, and there are 
totally 36 measurement points in each simulation. The 
number of unknowns is set to 10 (i.e., N+2=10), to save 
computing time. The population size is chosen as 250 (i.e., 
M =250). The search range for unknown coefficient of the 
shape function is chosen to be from 0 to 0.1. The search 
range for unknown periodic length is chosen from 0.05 to 
0.1. The extreme value of the coefficient of the shape 
fbnction and periodic length can be determined by the prior 
knowledge of the objects. The crossover probability pc and 
mutation probability p,,, are set to be 0.8 and 0.04 

respectively. The value of a is chosen to be 0.001. 
In the example, the shape function is chosen to be 

F ( 0 )  = (0.03+ 0 . 0 0 6 ~ 0 ~ 0  +0.003cos20 +0.003sinO)m with 

periodic length d=0.09 m. The reconstructed shape function 
for the best population member (chromosome) is plotted in 
Fig. 2(a) with the error shown in Fig. 2(b), while the error 
for the reconstructed periodic length is also given in Fig. 
2(b). Here DR and PD, which are called shape function and 
periodic length discrepancies respectively, are defined as 

PD = 
d 

where N' is set to 100. Quantities DR and PD provide 
measures of how well ~ ~ ' ' ' ( e )  approximates F ( 0 )  and P"' 
approximates d respectively. From Fig. 2, it is clear that the 
reconstruction of the shape fbnction and periodic length is 
quite good. In addition, we also see that the reconstruction 
of shape function does not change rapidly toward the exact 
value until PD is small enough. This can be explained by the 
fact that the periodic length makes a stronger contribution to 
the scattered field than the shape function does. 
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Fig. 2(a) Shape function for example 1 .  The solid curve, star curve 
and dot curve represent the exact shape, initial shape and 
reconstructed shape, respectively. 
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Fig. 2(b) Periodic length error and shape function error in each 
generation. 

IV. CONCLUSIONS 

We have presented a study of applying the genetic 
algorithm to reconstruct periodic length and the shape of a 
periodic conducting cylinder through knowledge of 
scattered field. Based on the boundary condition and 
measured scattered field, we have derived a set of nonlinear 
integral equations and reformulated the imaging problem 
into an optimization problem. By using the genetic 
algorithm, the periodic length and shape of the object can be 
reconstructed. Even when the initial guess is far away from 
exact, the genetic algorithm converges to a global extreme 
of the cost function. According to our experience, the main 
difficulties in applying the genetic algorithm to this problem 
are how to choose the parameters, such as the population 
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size ( M I ,  bit length of the string ( L ) ,  crossover 
probability ( p c )  , and mutation probability ( p , , , ) .  Different 

parameter sets will affect the speed of convergence as well 
as the computing time required. From the numerical 
simulation, it is concluded that a population size from 100 to 
300, a string length from 8 to 16 bits, and p,,and p,,, in the 

ranges of 0.7 < ,,,. c0.9 and 0.0005 < P m  < 0.05 are suitable 
for imaging problems of this type. 
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